Linear Algebra I

18/12/2015, Friday, 9:00-11:00

You are NOT allowed to use any type of calculators.
$1(2+6+4+4+4=20 \mathrm{pts})$
Linear equations

Consider the following linear system of equations

$$
\begin{aligned}
d+e-f & =2 \\
a+2 b+e-f & =0 \\
a+2 b+2 c-e+f & =2 .
\end{aligned}
$$

(a) Write down the augmented matrix.
(b) By performing row operations, put the augmented matrix into row echelon form.
(c) Determine the lead and free variables.
(d) By performing row operations, put the augmented matrix into row reduced echelon form.
(e) Find the solution set of the equation.
$2(10+10=20 \mathrm{pts}) \quad$ Determinant and inverse matrix

Consider the matrix

$$
\left(\begin{array}{llll}
x & 1 & 1 & 1 \\
1 & x & 1 & 1 \\
1 & 1 & x & 1 \\
1 & 1 & 1 & x
\end{array}\right)
$$

1. Find the determinant.
2. Determine all values of x for which this matrix is nonsingular.
$3 \quad(10+10=20 \mathrm{pts})$
Partitioned matrices

Let A, B, and C be $n \times n$ matrices and

$$
M=\left[\begin{array}{cc}
A & B \\
C & 0_{n \times n}
\end{array}\right]
$$

1. Show that M is nonsingular if and only if both B and C are nonsingular.
2. Suppose that B and C are nonsingular. Find the inverse of M.

Consider the vector space P_{4}. Let $S=\left\{p(x) \in P_{4} \mid p(x)+p(-x)=0\right\}$ and $L: P_{4} \rightarrow P_{4}$ be given by $L(p(x))=\frac{1}{2}(p(x)+p(-x))$.

1. Are the vectors $1+x, x+x^{2}, x^{2}+x^{3}, x^{3}+1$ linearly independent?
2. Are the vectors $1+x, x+x^{2}, x^{2}+x^{3}, x^{3}$ for a basis for P_{4} ?
3. Show that the set S is a subpace of P_{4}. Find a basis for S and determine its dimension.
4. Show that L is a linear transformation.
5. Find ker L.
6. Find the matrix representation of L with respect to the ordered basis $\left\{1+x, x+x^{2}, x^{2}+\right.$ $\left.x^{3}, x^{3}\right\}$

10 pts free

